AI as a Service – A Bold Move in 2025?

Artificial intelligence as a service (AIaaS) is a cloud-based solution for enterprises to invest in advanced technology. Here, we’ll discuss AIaaS, its role in today’s market, and how businesses achieve their goals by partnering with AI service providers. The adoption rate of artificial intelligence has increased multifold over the years. Many businesses, be they startups or established enterprises, are investing in AI in varied ways to gain a competitive edge and survive volatile market conditions. According to Grandview Research, the AI market is likely to experience an annual growth rate of 37.7% between 2023 and 2030. A report by Markets & Markets shows that the global AI market is predicted to reach $1.3 trillion by 2030.  Fortunately for businesses, nonprofits, and government agencies, any organization can adopt AI technology on any scale. It can be a tiny part of your business process or be 100% integrated into all processes across the departments and verticals. Moreover, artificial intelligence services are diverse and customizable. Naturally, this led to a relatively new cloud-based AI offering called AI as a service (AIaaS). This is more convenient, budget-friendly, and effective compared to large-scale AI adoption and implementation.  But what exactly is AIaaS? What does an AI services company do to offer artificial intelligence as a cloud service? Will it be a worthy choice for businesses in 2025?  Let’s find out!  What is the AI Model as a Service? AI as a service (AIaaS) is a new business model where service providers offer artificial intelligence-based solutions through a cloud platform. Instead of setting up the AI tools/ apps on-premises, the software is hosted on a remote cloud server and accessed by users whenever necessary.  All technologies and tools under the umbrella term AI are available on the cloud. Be it machine learning algorithms, natural language processing (NLP) models, large language models (LLMs), generative AI apps, computer vision, advanced analytical tools, etc., can be accessed remotely to get near real-time and real-time results. In the AI as a service business model, you subscribe to use the required tools and software provided by the vendors. You pay only for what to use and not for all the other services offered. Additionally, the pay-as-you-go model allows startups and emerging businesses to save money on unwanted expenses. You can upgrade or downgrade the subscription plan as necessary. Furthermore, there’s no need to invest heavily in building the IT infrastructure in the office. Employees can use their personal devices and work from any location as long as they have been authorized to access the tools. What is the Purpose of AI as a service? As per Global Market Insights, the AI as a service market size is expected to grow at a CAGR (compound annual growth rate) of 28% between 2023 and 2032 and reach $75 billion by 2032. This growth rate can be attributed to the ease of using artificial intelligence as a cloud service.  The main purpose of AIaaS is to eliminate the need for unwanted hardware and bring greater flexibility to the business’s IT infrastructure. AI as a service is diverse and can be classified into the following types. Whether you want to implement only one of the above or a combination (and all of them), the AI product development company will create a price plan accordingly and determine the subscription charges. That way, you pay for what you use while ensuring quality, scalability, agility, and personalization are not compromised. Of course, there can be a few concerns like data security, lock-in agreements, and transparency about the core AI systems used. However, these issues are a problem only if you choose a service provider at random. Many reliable companies that offer AI as a service address these concerns proactively. For example, DataToBiz is an ISO-certified AIaaS company that complies with global data regulations and has a transparent pricing model. The developers use existing cloud technologies or build new models based on clients’ requirements. With the right partner, you can vastly benefit from switching to the AIaaS business model. Why You Should Invest in AI as a service?  What makes AI as a service a better alternative to implementing artificial intelligence in your business? Check out below.  With AIaaS, an organization can quickly build, develop, and release products into the market. The production cycle can be shortened without affecting quality and performance. AI product development in today’s world results in low-code or no-code applications that can be built and customized in a fraction of the time usually required to develop a model from scratch. The drag-and-drop interfaces accelerate time to market and allow you to quickly launch new products before competitors.  AI as a service is a long-term solution or an agreement with the service provider. As long as you pay for the subscription, you will get continuous improvements and upgrades offered by the company. In most enterprise price plans, you don’t have to pay extra for troubleshooting, upgrading, or maintenance services. The service provider offers these as a part of the package. Over the years, you gain more from the service and see positive growth in ROI.  Advanced technology is not cheap, and not every business has the capacity to buy new tools and software as soon as they are released. What will you do with the existing apps? How many can you buy only to use for a limited period? However, with AI as a service, there’s no need to make huge purchases. You can use the latest tools without buying them outright. That makes it feasible for startups and small businesses to use technology just like large enterprises do. The stakes are lower as you can switch from one service provider to another or use a different platform if the current one doesn’t meet your expectations.  As mentioned earlier, AI as a service offers more flexibility in choosing what features, tools, frameworks, and solutions to implement in a business. There’s no need to complicate the systems by trying to use every available option for its own sake.

Read More

Generative AI Services vs. Traditional AI – The Intelligent Choice?

Artificial intelligence comes in many types and forms. It has diverse uses in different industries and can support organizations to increase ROI and profits. Here, we’ll discuss traditional AI vs. generative AI services and how they help businesses in various ways. Artificial intelligence (AI) is the buzzword in today’s digital world. It is a part of our everyday lives in one way or another. With continuous research and development in the field, AI is becoming more powerful and useful on a large scale. For example, in the last couple of years, we went from using traditional AI to relying on generative AI.  All types of AI are being discussed and implemented in different industries. Traditional and genAI are both used in businesses for various purposes. The global AI market was valued at $454.12 billion in 2023 and is expected to touch $2500 billion by 2032 at a CAGR (compound annual growth rate) of 19%. According to McKinsey, generative AI will add $2.6 trillion to $4.4 trillion worth of value to the global economy.  But what exactly is traditional AI? How does generative AI differ from traditional AI? Should a business solely invest in generative AI services or should it stick to traditional AI? Which service is the right choice for a business?  Let’s find out in this blog.  What is Traditional AI? Traditional AI is a subset of the umbrella term artificial intelligence. It is also called narrow or weak AI and is predominantly used to perform tasks based on predefined parameters. The algorithms are trained to complete a set of actions for the given input. It can handle simple tasks efficiently and automate repetitive tasks as and when necessary. It also works well in domains where the rules don’t change often and follow a set pattern.  For example, online gaming, industrial automation, workflow automation, data analytics, medical diagnosis, spam filters, recommendation engines, virtual assistants, etc., are some traditional AI use cases across industries. It helps with decision-making and problem-solving at various levels in the enterprise. Since the rules are explicit, traditional AI is more transparent and the algorithms are easier to understand. The AI applications offer domain-specific services and are fairly reliable. However, its limited learning capabilities and strict rules don’t offer a chance for the models to become more powerful.   Many companies offer traditional AI consulting services for businesses to streamline their processes, shorten production cycles, and understand customer data. Existing models can be customized or new models can be developed from scratch to help organizations achieve their goals. Starting with traditional AI adoption usually helps as it allows employees to get used to new technology before dealing with advanced versions. sights. What is GenAI? Generative AI is a new take on artificial intelligence to provide more adaptive, flexible, and sophisticated algorithms. Unlike traditional AI, generative AI can create new content (text, images, audio, and videos) by analyzing large datasets to identify patterns. Instead of relying on strict rules or parameters, it learns by analyzing the input and datasets to provide a creative and unique result to the end user. For example, a generative AI application can process the input text and generate an image based on the prompt. It goes beyond what narrow AI can achieve and pushes the boundaries farther.  Naturally, there are questions like – is GenAI related to LLM, or is ChatGPT a generative AI? The answer is yes to both questions. GenAI is a broader concept dealing with different types of models that generate content. LLM (large language model) is a specific form of generative AI and acts as a foundation model to run a wide range of NLP (natural language processing) tasks. ChatGPT by OpenAI is a form of generative AI that can converse with users like another human and provide a relevant answer/ result to their input.  Generative AI also uses machine learning, deep learning, and neural networks to analyze the datasets and produce new content. While content creation, personalized recommendations, and virtual assistants are some uses of GenAI, it is not without some flaws. There is ambiguity in how the algorithms ‘create’ content and the use of public data for training the models can violate copyright and IP rights. Additionally, the generated content may not be 100% accurate or reliable as genAI is still in the development stage.  Nevertheless, businesses can vastly benefit from generative AI services if they have a clear idea of what they want and how to use the applications to increase performance and reduce risk. Some services can be offered through traditional and generative AI. For example, AI chatbot solutions can be built on narrow AI and genAI models. What the chatbots can achieve depends on the type of model used. Naturally, generative AI-based chatbots are more conversational and can deliver better results, especially when trained on high-quality data.  How is Generative AI Different from Other AI Approaches? Generative AI differs from other artificial intelligence approaches that focus on data analysis or making predictions. While both types analyze data and identify patterns, generative AI uses this to generate content and create something new, which other AI cannot do.  Here, we’ll compare generative AI with other models to understand the difference. AI vs. Generative AI vs. Machine Learning We have already discussed the difference between AI (traditional) and generative AI. Machine learning is a subset of artificial intelligence that combines concepts like statistics and computer programming to identify hidden patterns and trends in diverse datasets. It uses data and algorithms to enable AI models to mimic how humans learn and can improve their accuracy through the feedback loop. Machine learning models are classified into three types – supervised, unsupervised, and reinforcement learning.  The primary difference between generative AI and machine learning lies in how and when they are deployed. ML is a part of genAI applications and is used for prediction and optimization based on insights derived from data analysis. Generative AI analyzes data to create similar structures or samples exhibiting the required characteristics. Additionally, machine learning

Read More

LLMs in AI Development- Key to AI’s Next Breakthrough?

Large language models can provide a transformative experience in various sectors, be it real estate, healthcare, entertainment, or manufacturing. Here, we’ll discuss the future of LLMs in AI development and how it can help businesses enhance their processes, products, and services.  Artificial intelligence has seen great advancements in recent years. It is a part of everyday life, be it social or professional. From smartphones and voice assistants to commercial chatbots, content generators, and workflow automation tools, AI has diverse applications and uses. According to Grand View Research, the global AI market is estimated to touch $1,811.8 billion by 2030.  Large Language Models (LLMs) are a part of artificial intelligence and play a vital role in generative AI. These have shot to fame with the success of ChatGPT and other generative AI tools (generative AI apps and built on LLMs and other foundation models, so LLM is a part of generative AI and not GenAI on the whole). Statistics show that the global LLM market was $159.0 million in 2023 and is expected to grow at a CAGR (compound annual growth rate) of 79.80% to reach $259.8 million in 2030. It is predicted that 750 million applications will use LLMs by 2025 to automate 50% of digital work. In this blog, we’ll talk about what LLM stands for in AI, their working methodology, and the possible future of LLMs in AI development. What are LLMs in AI Development? Large Language Models(LLMs) are used to build generative AI applications for various purposes. So, is ChatGPT LLM? Yes, ChatGPT comes under LLMs, but it is actually a GenAI tool.  LLMs are massive deep learning models pre-trained on huge amounts of data to provide better quality output by understanding the context of the user’s input. The large language models have powerful transformers, which are a set of neural networks with encoders and decoders that can analyze the input data to interpret the meaning and provide a relevant and (relatively) accurate output.  LLMs can handle unsupervised data and work with hundreds of parameters, which makes them highly suited for handling complex tasks. They are versatile, flexible, and customizable. For example, LLMs can support generative AI tools that convert input text into images, videos, or audio sounds. It can scan, read, edit, and summarize several pages of text in a few minutes. This makes LLMs an important part of AI product development.  As per the Datanami August 2023 Survey, 58% of companies work with LLMs but a majority of them are only experimenting with it. This shows that even though large language models are gaining popularity, businesses taking time to explore the technology and understand how it can help their establishments. The diverse role of LLMs in AI development makes it clear that the models will have a profound impact on the future. Future of LLMs in AI Development  AI researchers want to build culturally and linguistically diverse and inclusive LLMs to make the models user-friendly for people around the world.  Predicting Next-Gen AI-Language Models LLMs in AI language models can help in providing more human-like interactions with chatbots. The LLMs can power AI chatbot solutions to be more context-aware and learn from the interactions with users to offer better responses. Additionally, it could also make AI more capable of understanding the subtle nuances in text. This can make the language models more efficient and accurate for a wide range of communication purposes. Cross-Disciplinary Usage  What if we say, LLM in AI development can promote the integration of two or more technologies for developing applications for different fields? For example, AI language models can be integrated with robotics or computer vision to build robots that understand verbal instructions and respond more effectively to human interactions. Another example of cross-disciplinary application is how the LLMs can help AI tools simultaneously analyze visual and auditory data for enhanced security and surveillance.  Breakthrough in Algorithms Large language models can streamline AI algorithms to enable the models to process more data in less time and with fewer resources. This reduces response times and empowers the models to offer better real-time capabilities. It could lead to AI applications that minimize energy consumption while optimizing user experiences. Businesses can redefine their processes to make AI an integral part of their establishment and get enhanced results. Apps with Greater Efficiency  AI-powered innovation strategies that actively use LLMs in AI development will result in applications that are not only bigger but also more efficient and diverse in handling a plethora of tasks. For example, the larger models could work even on smaller devices (like smartphones) which will enable users to work on the go.  Addressing Ethical and Bias Concerns  Ethical concerns and bias are two major challenges faced when adopting LLMs in a business. However, in the future, the same models could help overcome these concerns. AI researchers and developers are working on building models that can detect and mitigate bias in data. They are also focusing on developing LLMs that can be used ethically. While this could take some time, it is definitely something to look forward to in the future.  Generating Personalized Content  LLM advancements can further help AI tools to personalize content for various purposes like articles, news snippets, listicles, ads, target marketing, etc. Though there are already applications that offer such services, the content still feels like it is written by a machine. In the future, the LLMs used in AI development will understand the intricacies of language better to create text that aligns with the user’s requirements and read as if it has been created by humans.  Domain-Specific Applications  While businesses from different industries can use many large language models, future models can cater to specific domains. For example, AI developers can build LLMs for healthcare (patient management), finance (streamline payments and detect fraudulent transactions), law (read the reports and summarize them without misinterpretations), etc. Such models can be highly advantageous for businesses as they are trained on data from the industry and give more accurate results.  Real-Time Query

Read More

Generative AI Services – Do’s and Don’ts While Integrating GenAI

Generative AI services are offered by AI development companies to help organizations minimize risk and increase efficiency when implementing the latest technology. Here, we’ll discuss the do’s and don’ts to follow when integrating generative AI services with your business processes. Generative AI has become the talk of the town in recent times. ChatGPT, Gemini, Bard, Microsoft Bing, etc., have become popular among individuals and businesses. It has also promoted the adoption of traditional artificial intelligence applications in many industries. According to a report, the global AI market is projected to reach $1,811.8 billion by 2030.  Statistics show that the global generative AI market is $44.89 billion and is likely to cross $66.62 billion by the end of 2024. Another report indicates that the generative AI market could touch $1.3 trillion by 2032 at a CAGR (compound annual growth rate) of 42%.  But what is generative AI? How can generative AI services boost your business? And most importantly, what are the do’s and don’ts to follow when adopting genAI into your processes? Let’s find out in this blog.  How Generative AI Works Generative AI is a type of artificial intelligence that can create content like text, images, videos, music, etc., based on the input prompt. It uses deep learning, NLP (natural language processing), and LLM (large language models) to process input provided in human text and deliver a relevant output in the desired format.  Gen AI platforms are built on LLMs trained on large datasets to provide accurate or relevant results. Many organizations are investing in generative AI to streamline workflows and enrich products/ services. While the tech giants are building their models from scratch, other businesses are opting for cost-effective solutions like AI as a service (AIaaS) offered by third-party artificial intelligence development companies. This allows them to access the latest technology without affecting their budget. Moreover, AI service companies offer end-to-end solutions and take care of implementation, customization, and maintenance to save time and resources for the business.  The working of generative AI is complex. However, the process can be broadly divided into three phases – training the foundation model, fine-tuning the model to suit the business needs, generating output, evaluating it, and re-tuning the model to increase accuracy. All this is done by the service provider so that the business can benefit from using the technology to achieve its goals.  Generative AI Services – Do’s and Dont’s While Integrating Generative AI  Integrating generative AI tools into your business requires proper planning and execution. That’s why many organizations partner with a reliable AI service company and let them take care of the process from start to finish.  Consider the below-listed do’s and don’ts to effectively integrate genAI with your processes and overcome various challenges.  What to do When Integrating Generative AI  Define Clear Objectives and Goals  Whether you want generative AI as a service or build the models from scratch, you should first clearly know what you want. Define your objectives – short-term and long-term. Determine what you want to achieve by investing in generative AI. Do you want to adopt the technology throughout the business at once, or do you want to proceed in stages by prioritizing individual departments? Clarity is vital when embarking on a new journey.  Understand Capabilities and Limitations This point applies at multiple levels. Firstly, you should be aware of the talent gap in your business. This will help in choosing the best method to adopt generative AI. Then, you should also understand what genAI can and cannot do. Though it is an advanced technology, it has its limitations. Generative AI is not a perfect solution for any problem. Hire AI consulting services to figure out if it can solve your issues and how.  Partner with AI Development Company  Many businesses don’t have the necessary expertise to work with generative AI tools. The most effective way to bridge this talent gap is to hire a service provider. AI development companies have experienced engineers, analysts, developers, etc., to build, test, deploy, integrate, upgrade, and maintain various artificial intelligence and machine learning models. They can customize the solutions to suit your specific requirements and provide long-term support services for cost-effective pricing.  Maintain Clear Communication Make sure your employees know what’s going on. Integrating generative AI into your business will change many operations and impact the work culture. Employees need to be aware of this. Address their concerns and offer educational resources. Provide training modules, take their feedback, and include them in the decision-making process. Talk to generative AI development companies about what you want and clearly explain your requirements.  Start Small and Scale  Start on a small scale and build prototypes before you integrate generative AI across the enterprise. This will reduce the risk of error, losses, and delays. You can monitor how the new systems are working and fine-tune the models before implementing them in all verticals. Additionally, the focus will remain on the specific project instead of being scattered everywhere. Even large organizations with huge budgets can benefit from taking baby steps with new technology.  Create AI Adoption Policies  Generative AI still has a lot of gray areas. Some businesses actively avoid using it to prevent legal complications. However, employees may still use genAI platforms for different reasons. It is crucial to have clearly defined policies for adopting artificial intelligence and generative AI in your business. State what employees can do with the tools. Highlight what they should avoid and mention the consequences of not adhering to the regulations. AI services companies can help in creating the guidelines.  Data Preparation and Governance  Generative AI will give better results when it is trained on high-quality proprietary data. For this, you should first prepare your business data and store it in a centralized repository. Luckily, AI service providers also offer data engineering and data management services. Eliminate bias and discrepancies from data. Make sure the data is inclusive and diverse. Then create data governance frameworks to establish standards throughout the organization.  Be Innovative and Responsible 

Read More

5 Top GenAI Consulting Firms to Watch in 2024 

Generative AI is the latest development in the industry, opening new doors for businesses to grow and become successful. Here, we’ll discuss the top five GenAI consulting firms to hire in 2024 and the role of a service provider in successful AI adoption.  GenerativeAI has become a buzzword since the launch of ChatGPT in November 2022. Businesses are exploring the potential advantages of using Generative AI to streamline processes and enhance productivity.  According to a report by McKinsey, GenAI (Generative AI) can potentially contribute $2.6 to $4.4 trillion to the global economy every year by 2030. Generative AI can help a business in many ways, such as extracting information from audiovisual content, summarizing long pages of text, writing and debugging code, rewriting and editing content, providing multiple product or service descriptions, draft letters, emails, ads, and so much more.  Let’s find out more about the role of GenAI Consulting Firms in helping enterprises adopt the new technology. We’ll look at the top service providers offering GenAI consulting and LLM (large language model) development services in the industry.  Why is GenAI Important? Generative AI is a type of artificial intelligence that can create new content, like text, images, video, audio, synthetic data, etc., based on a given input command or query. DALL-E, ChatGPT, etc., are some well-known GenAI platforms used by individuals and businesses. These are built on large language models (LLMs) and trained on massive amounts of data.  Generative AI is important as it can disrupt the global industry and accelerate technological adoption and digital transformation. LLM consulting companies use open-source models to build customized applications for businesses and train them on proprietary data before deploying them in the client’s IT infrastructure. Almost every industry and department can benefit from generative AI.  How Will GenAI Impact Consulting? Generative AI adoption is one of the latest AI-powered innovation strategies that can impact a business in several ways. In the field of consulting, it can be useful in the following ways:  5 Top GenAI Consulting Firms to Watch in 2024 DataToBiz DataToBiz is among the top AI consulting firms offering tailor-made and end-to-end solutions for complete digital transformation, AI adoption, data engineering, business intelligence, and LLM development. The company provides LLM consulting for businesses from diverse industries and builds data-safe models on-premises and cloud platforms. It helped clients reduce the time taken to resolve concerns by up to 20% and optimized resource utilization by up to 18%. DataToBiz has experienced AI engineers to build, deploy, integrate, and upgrade AI chatbot solutions, automation tools, virtual assistants, etc. The company provides 24*7 customer support with its 360-degree LLM implementation. It is a certified partner of Microsoft, Google Cloud, and AWS.  LeewayHertz LeewayHertz is one of the best AI development companies in the market, offering innovative product development and consulting services to businesses from several industries. The company develops domain-specific LLMs that can be seamlessly integrated with the existing business systems in an organization. The experts work with different foundational models to choose the most appropriate solution based on the client’s requirements. LeewayHertz also offers strategic consulting services for GenAI adoption. It provides LLM optimization and maintenance services for top-tier Fortune 500 companies. Businesses can choose a hiring model that suits their project specifications.  Strong Analytics Strong Analytics is a GenAI model development and data analytics service provider offering custom machine learning software and solutions to diverse clients. The company empowers businesses with cutting-edge AI technologies that have been customized for each business’s specific requirements. It focuses on building high-performance models that can help businesses navigate the complexities in their industries and achieve the desired results. Strong Analytics also provides data augmentation and synthesis, content generation and automation solutions, computer vision and image synthesis applications, and consulting services to adopt and implement Generative AI in a business.  Deeper Insights Deeper Insights is a data intelligence company offering GPT-3 for product development and Generative AI services to different businesses from around the globe. The company builds custom LLMs and trains them on the proprietary data of the clients to provide accurate and meaningful output. It helps establishments unlock the full potential of their business data and thrive in competitive markets. Deeper Insights aims to reduce costs, optimize resources, increase efficiency, and enhance decision-making capabilities in businesses. It provides end-to-end support, be it strategy formation, large language model customization, deployment, fine-tuning, and long-term maintenance. The company is an AI partner of many leading global businesses.  ThirdEyeData ThirdEyeData is an AI and large language model consulting company with ISO certification. It also has Microsoft Silver partner certification and SOC 2 Type 1 data security certification. The company builds real-world AI applications to promote data-centric business models. It develops ChatGPT and Generative AI solutions for automation, predictive modeling, recommendation, decision support, analytics, conversions, etc. The company blends machine learning, computer vision, NLP (natural language processing), and GenAI to provide tailor-made solutions for businesses to overcome various challenges and achieve their goals. ThirdEyeData offers consulting, application development, bespoke LLM training and optimization, data engineering, and other custom solutions. It has won several awards and is a reputed service provider.  What are the Challenges of Gen AI? While building AI products with LLMs is beneficial for businesses, the process is not without a few challenges. These concerns can be overcome by partnering with the reputed GenAI consulting firms we listed above.  How New Opportunities can be Created Using GenAI? AI product development experts have been working on a varied range of projects to find innovative ways to use Generative AI solutions in businesses. It can create new opportunities for enterprises to gain a competitive edge and increase ROI. A few such examples are as follows:  How to Hire a Generative AI Consulting Firm? Consider the following factors when hiring a GenAI consulting firm to work on your project.  Businesses can get AI product development cost estimation reports from shortlisted service providers and compare the offerings before making the final decision. However, note that cost is not the only factor. The features and services included will play a vital role in the final output.  Conclusion  Generative AI can support a business in many ways. However, the technology and its ecosystem are still evolving. Enterprises will need to plan for the future when hiring a service provider. Opt for Generative AI consulting services that make the business flexible, agile, scalable, and future-proof. With direct access to

Read More
DMCA.com Protection Status

Get a Free Data Analysis Done!

Need experts help with your data? Drop Your Query And Get a 30 Minutes Consultation at $0.

They have the experience and agility to understand what’s possible and deliver to our expectations.

Drop Your Concern!