Your 10 Step Guide to Data Domination in 2025

Data domination allows businesses to make informed and data-driven decisions using real-time actionable insights. Here, we’ll discuss the guide to data domination through tailored data engineering services for your business.  Data domination is the process of streamlining and effectively managing datasets to benefit from the data-driven model and make proactive decisions. It is a blueprint to implement data engineering and management solutions in your enterprise. So does it mean data engineering necessary is in 2025? Absolutely!  Statistics show that the global big data and data engineering market will be $75.55 billion in 2024 and expected to reach $169.9 billion by 2029 at a CAGR (compound annual growth rate) of 17.6%. It is evident data engineering services are not only necessary for 2025 but will continue to play a prominent role even afterward. Of course, data domination is easier said than done. You should consider many factors like data collection methods, data ingestion, safe and secure data storage, long-term maintenance, troubleshooting, etc. Not addressing these concerns can lead to failed data management systems. That would be counterproductive, isn’t it?  Luckily, you can overcome these challenges and more by partnering with a reliable data engineering company. Hire experts from the field to mitigate risks and increase your success rate.  Let’s check out the detailed guide to data domination in 2025. Before that, we’ll find out how to overcome the challenges in data engineering. Challenges for Data Domination and How to Overcome Them  As per Gartner, poor data quality leads to a loss of $15 million annually for businesses around the world. Avoiding this and many other pitfalls is easy when you make informed decisions. By overcoming these challenges, you will be several steps closer to data domination and gain a competitive edge.  Data Ingestion Data ingestion refers to feeding data from multiple sources into your systems. It is one of the initial steps of data engineering solutions. The data ingested is then cleaned, processed, and analyzed to derive insights. A few challenges you might face are as follows:  These issues can be sorted by in-depth planning. Instead of immediately connecting the data sources to your systems, take time to identify the right sources and set up data validation and cleaning processes (ETL and ELT). Automate the process to save time and reduce the risk of human error. Determine your budget and long-term goals when deciding the data ingestion method. Migrate to cloud platforms for better infrastructure support. Data Integration Data integration depends on how well the various software solutions, applications, and tools used in your enterprise are connected to each other. Naturally, data will be in different formats and styles depending on the source. A few more challenges are listed below:  For seamless data integration, you should first create a data flow blueprint. Then, identify software solutions that are not compatible with others (legacy systems) and modernize or replace them. Since you have to integrate different data types (structured, unstructured, and semi-structured), you should invest in data transformation tools. Azure data engineering services cover all these and more!  Data Storage The biggest concern about data storage is scalability. With so much data being collected in real time, where will you store it? Moreover, how much can your data storage centers handle the load? What to do with old data? How hard will it be to retrieve data from the storage centers? Here are more challenges to consider:  Choosing the wrong data storage model can adversely affect the entire data engineering pipeline. Migrating to cloud servers is an effective way to overcome these roadblocks. For example, Azure, AWS, or Google Cloud platforms offer flexible, scalable, and agile data warehousing solutions. You can set up a customized central data warehouse that can be upgraded whenever necessary. A data warehouse is capable of handling large datasets and can quickly respond to queries.  Data Processing Traditional data processing tools cannot handle diverse data. They also cannot process large datasets quickly. Processing data from silos can lead to data duplication and reduce the accuracy of the results. There are more data processing concerns, such as:  Modern problems require modern solutions. Instead of struggling with traditional tools, switch over to advanced technologies and AI-powered data processing tools. Similarly, data silos have to be replaced with a central data repository like a data warehouse or a data lake. Partnering with AWS data engineering companies will help you identify the right tools and technologies to process data in real time and share the insights with employees through customized data visualization dashboards.  Data Security and Privacy Data brings more challenges with it. After all, you are using data that includes confidential information about your customers, target audiences, competitors, and others. How to ensure this data is safe from hackers? How to avoid lawsuits from others for using their data for your insights? Common data security concerns are:  Data security should be included as a part of data warehousing services. Data encryption, data backup, disaster recovery management, authorized access to stakeholders, security surveillance, security patch management, and employee training (to create awareness about cyber threats), etc., are some ways to overcome these challenges. The service provider will also create a detailed data governance guide to provide the framework for regulatory compliance. 10-Step Guide to Data Domination in 2025 Step 1: Define Business Goals  Always start at the beginning. Lay the foundations clearly and carefully. What do you want to achieve through data domination? How will your business improve through data engineering? What are your long-term objectives? Be detailed in defining the business goals so that your stakeholders and service providers understand the requirements.  Step 2: Hiring a Data Engineering Company  Data domination is not an easy task. It’s a multi-step and continuous process that requires expertise in different domains. While you can build a team from scratch by hiring data engineers, it is cost-effective and quick to hire data engineering or a data warehousing company. Make sure it offers end-to-end services and works remotely.  Step 3: Create a Data Domination Strategy 

Read More

9 Building Blocks of Data Engineering Services – The Fundamentals

Data engineering is the key for businesses to unlock the potential of their data. Here, we’ll discuss the fundamentals aka the building blocks of Data Engineering Services, and the role of data engineering in helping businesses make data-driven decisions in real time.  Data engineering services are gaining demand due to digital transformation and the adoption of data-driven models in various business organizations. From startups to large enterprises, businesses in any industry can benefit from investing in data engineering to make decisions based on actionable insights derived by analyzing business data in real-time.  Statistics show that the big data market is expected to reach $274.3 billion by 2026. The real-time analytics market is predicted to grow at CAGR (compound annual growth rate) of 23.8% between 2023 and 2028. The data engineering tools market is estimated to touch $89.02 billion by 2027. There’s no denying that data engineering is an essential part of business processes in today’s world and will play a vital role in the future.  But what is data engineering? What are the building blocks of data engineering services? How can it help your business achieve your goals and future-proof the process?  Let’s find out below. What are Data Engineering Services? Data engineering is the designing, developing, and managing of data systems, architecture, and infrastructure to collect, clean, store, transform, and process large datasets to derive meaningful insights using analytical tools. These insights are shared with employees using data visualization dashboards. Data engineers combine different technologies, tools, apps, and solutions to build, deploy, and maintain the infrastructure.  Data engineering services are broadly classified into the following: Azure Data Engineering  Microsoft Azure is a cloud solution with a robust ecosystem that offers the required tools, frameworks, applications, and systems to build, maintain, and upgrade the data infrastructure for a business. Data engineers use Azure’s IaaS (Infrastructure as a Service) solutions to offer the required services. Finding a certified Microsoft partner is recommended to get the maximum benefit from Azure data engineering.  AWS Data Engineering AWS (Amazon Web Services) is a cloud ecosystem similar to Azure. Owned by Amazon, its IaaS tools and solutions help data engineers set up customized data architecture and streamline the infrastructure to deliver real-time analytical insights and accurate reports to employee dashboards. Hiring certified AWS data engineering services will give you direct access to the extensive applications and technologies in the AWS ecosystem.  GCP Data Engineering Google Cloud Platform is the third most popular cloud platform and among the top three cloud service providers in the global market. From infrastructure development to data management, AI, and ML app development, you can use various solutions offered by GCP to migrate your business system to the cloud or build and deploy a fresh IT infrastructure on a public/ private/ hybrid cloud platform.  Data Warehousing   Data warehousing is an integral part of data engineering. With data warehousing services, you can eliminate the need for various data silos in each department and use a central data repository with updated and high-quality data. Data warehouses can be built on-premises or on remote cloud platforms. These are scalable, flexible, and increase data security. Data warehousing is a continuous process as you need to constantly collect, clean, store, and analyze data.  Big Data  Big data is a large and diverse collection of unstructured, semi-structured, and structured data that conventional data systems cannot process. Growing businesses and enterprises need to invest in big data engineering and analytics to manage massive volumes of data to detect hidden patterns, identify trends, and derive real-time insights. Advanced big data analytics require the use of artificial intelligence and machine learning models.  9 Building Blocks of Data Engineering Services Data Acquisition Data ingestion or acquisition is one of the initial stages in data engineering. You need to collect data from multiple sources, such as websites, apps, social media, internal departments, IoT devices, streaming services, databases, etc. This data can be structured or unstructured. The collected data is stored until it is further processed using ETL pipelines and transformed to derive analytical insights. Be it Azure, GCP, or AWS Data Engineering, the initial requirements remain the same.      ETL Pipeline ETL (Extract, Transform, Load) is the most common pipeline used to automate a three-stage process in data engineering. For example, Azure Architecture Center offers the necessary ETL tools to streamline and automate the process. Data is retrieved in the Extract stage, then standardized in the Transform stage, and finally, saved in a new destination in the Load stage. With Azure Data Engineering, service providers use Azure Data Factory to quickly build ETL and ELT processes. These can be no-code or code-centric.  ELT Pipeline  ELT (Extract, Load, Transform) pipeline is similar but performs the steps in a slightly different order. The data is loaded to the destination repository and then transformed. In this method, the extracted data is sent to a data warehouse, data lake, or data lakehouse capable of storing varied types of data in large quantities. Then, the data is transformed fully or partially as required. Moreover, the transformation stage can be repeated any number of times to derive real-time analytics. ELT pipelines are more suited for big data analytics.  Data Warehouse  A data warehouse is a central repository that stores massive amounts of data collected from multiple sources. It is optimized for various functions like reading, querying, and aggregating datasets with structured and unstructured data. While older data warehouses could store data only tables, the modern systems are more flexible, scalable, and can support an array of formats. Data warehousing as a service is where the data engineering company builds a repository on cloud platforms and maintains it on behalf of your business. This frees up internal resources and simplifies data analytics.  Data Marts A data mart is a smaller data warehouse (less than 100GB). While it is not a necessary component for startups and small businesses, large enterprises need to set up data marts alongside the central repository. These act as departmental silos but with seamless connectivity

Read More

Is Azure Infrastructure as a Service The Future of Cloud Computing?

Microsoft Azure is one of the top three cloud computing platforms used by various business organizations. Here, we’ll discuss the basics, use cases, benefits, and examples of Azure infrastructure being the future of cloud computing. Microsoft Azure is a popular cloud platform with an extensive ecosystem of tools, technologies, applications, storages, frameworks, etc., useful for diverse requirements. It is among the top three cloud solutions in the global market.  According to statistics, Azure’s market share reached 24% in 2024, and the customer base grew by 14.2% from 2023. Since its launch in 2010, Azure has been a tough competitor. Azure, AWS (Amazon Web Services), and Google Cloud continue to be the top three cloud platforms for SaaS, PaaS, and IaaS solutions. The 2024 Azure Market Report states that Azure has 350,000 customers for cloud computing services.  Azure infrastructure as a service (IaaS) can streamline business processes across all verticals and reduce the pressure of maintaining and upgrading the systems on-premises. But what are Azure infrastructure services? Where do data engineering services come into the picture? How can Azure IaaS help a business?  Let’s find out in this blog. What is IaaS on Azure? Infrastructure as a service (IaaS) is a cloud computing service where the entire IT infrastructure (storage, networking, backup, applications, virtual machines, etc.) is hosted on a remote cloud server. It allows businesses to save money through the pay-on-demand pricing model. Businesses can reduce the expenses of maintaining the data silos in each department and upgrading the hardware periodically. With IaaS, organizations also gain access to real-time insights and can quickly embrace advanced technologies.  Azure infrastructure as a service encourages flexibility, scalability, and reliability of the IT system in an enterprise. From a startup to an established enterprise, any business can invest in Azure IaaS and build a robust cloud-based IT infrastructure. Existing setups can be migrated to the cloud, or a new infrastructure can be built and deployed on the Azure cloud. This depends on various factors like business requirements, timeline, budget, legacy systems, long-term objectives, etc. Testing, implementation, integration, storage, data backup and recovery, web app development, etc., are a part of the services. Since it is a complex process, most organizations prefer collaborating with certified Microsoft Azure partners to handle the task. This ensures complete access to the tools and apps in the Microsoft marketplace and the necessary expertise to keep things running seamlessly. A certified partner has the necessary experience and skills to customize Azure cloud infrastructure to suit the business needs. What is Azure Data Engineering? Data engineering is the process of designing, building, and maintaining data systems to collect, store, and analyze large datasets and derive meaningful real-time insights. It combines many responsibilities and the core part of the data-driven model. Azure data engineering services are provided by certified data engineers who offer end-to-end support in managing data and data systems on the cloud.  An Azure data engineer will integrate, transform, and consolidate data from multiple sources to make it possible to derive insights. From building data pipelines to handling structured, semi-structured, and unstructured data in large quantities and helping stakeholders understand the analytical reports, a data engineer has much to do.  Data engineering companies also offer Azure IaaS solutions and help businesses build the data warehouse/ data lake on the cloud platform. The experts create the necessary system connections to make the insights accessible to employees through customized dashboards. This helps in making proactive data-driven decisions.  Benefits of Azure Infrastructure as a Service (IaaS) Enhanced Data Security and Encryption  Azure infrastructure encryption offers built-in security features and capabilities to keep the business data and systems safe from unauthorized access. It also helps organizations adhere to data privacy regulations based on geographical location and industry standards. With Azure, businesses can reduce the risk of cyber threats and protect user data.  Centralized and Cloud-Based Infrastructure  Maintaining individual IT systems with data scattered throughout the enterprise is not only cost-intensive but also stressful. This reduces data quality and can result in outdated or incorrect insights. With Azure infrastructure as a service, organizations can build a unified and centralized IT infrastructure that anyone in the enterprise can access. It is a simplified and efficient way to run the business processes.  Fewer Hardware Maintenance Costs Maintaining legacy systems can be a costly exercise for businesses as they become outdated over the years and will no longer be compatible with new technologies. Organizations have to periodically invest in new hardware and pay for maintenance services to make sure they can access the latest tools in the market and gain a competitive edge. By switching over to Azure infrastructure as a service, most business hardware can be eliminated. Employees access the virtual machines from their devices and can work remotely. Streamlined Operations  One of the biggest advantages of data engineering services and IaaS is automation. Instead of wasting time and resources on manually performing repetitive actions, businesses can automate even complex tasks. This reduces the workload on employees and minimizes the risk of human error. Additionally, the workflows are streamlined into an order that maximizes efficiency without compromising quality or control.  Remote and Restricted Access  Remote working has become a norm in recent times. Employees have to have access to business systems, data, tools, and dashboards irrespective of their location. At the same time, people without authorization (hackers, scammers, etc.) should not be allowed to gain control over the business processes. Azure IaaS balances these two aspects with ease. It encourages remote collaboration between teams but also provides restricted access to confidential data.  Standardized Applications  Azure infrastructure as a service encourages the standardization of business processes and applications by developing a unified platform to manage all tasks and systems. Furthermore, the third-party apps and tools belong to the Microsoft ecosystem and follow the same standards. This results in improving consistency in performing day-to-day activities and achieving the desired results every time.  Flexibility and Scalability  Another benefit of Azure infra developer is the flexibility it offers to businesses. The

Read More

Modern Data Engineering 101 – Benefits, Use Cases, Examples!

This blog talks about modern data engineering 101 and how organizations are using it to their advantage to extract the full potential of their data. We’ll discuss its benefits and relevant examples of how data engineering services have transformed various industries. Data engineering plays an important role due to the large data volumes and increasing dependence on data-driven decision-making. The global big data analytics market size was valued at USD 307.51 billion in 2023 and is expected to grow from USD 348.21 billion in 2024 to USD 924.39 billion by 2032 at a CAGR of 13%. “Data as a product is very different from data as an asset. What do you do with an asset? You collect and hoard it. With a product, it’s the other way around. You share it and make the experience of that data more delightful.” – Zhamak Dehghani, author of Data Mesh, Delivering Data Value at Scale. In this blog, we’ll discuss modern data engineering and how organizations are using it to make the most out of their data. What is Modern Data Engineering? Modern data engineering includes building, managing, and optimizing scalable data pipelines to handle large volumes of data from multiple sources. It processes data in real-time and uses cloud-based architectures and tools. These tools support data integration, transformation, and storage for advanced analytics and decision-making. Importance of Modern Data Engineering Data engineering helps organizations handle and organize data so that data analysts and scientists can easily analyze it. Here’s why data engineering services are important: The main part of data engineering involves managing data pipelines and ETL (Extract, Transform, and Load) processes. Data engineers build and maintain these pipelines to ensure clean and valid data is available to data analysts. This helps teams access data easily, gain insights, and make informed decisions, enhancing business growth and output. Benefits of Modern Data Engineering Imagine you’re trying to get the most out of your data, but it’s scattered all over the place. That’s where data engineering comes in. Now let’s understand some benefits data engineering solutions bring with them. Use Cases of Modern Data Engineering Some of the potential use cases of data engineering I’ve seen are: Personalized recommendations Subscription-based streaming services such as Netflix and Amazon Prime offer personalized recommendations to their viewers. These companies collect and organize user data and use machine learning to offer personalized recommendations. Fraud detection Banks and financial institutions use data engineering to prevent fraud. They gather vast amounts of transaction data, and with the help of advanced algorithms, they can spot suspicious patterns in real-time, preventing fraud before it even takes place. Predictive maintenance Manufacturing companies use data engineering to keep machines running smoothly. The sensors on equipment collect data continuously, and engineers use these insights data to predict when a machine may fail, preventing breakdowns. Customer behavior analysis eCommerce store owners can track customer purchases, their preferences, and browsing behavior. Further, they analyze these trends with the help of data engineering to create personalized marketing campaigns to offer personalized recommendations. This is the reason why you often see ads for things you’re interested in since the companies already have relevant data to target you. Real-time data analysis Businesses can collect, clean, and verify data through automated data pipelines. This makes it easy for data analysts to centralize large volumes of data by breaking down silos and making informed and strategic decisions. Businesses can detect trends, respond to market changes, and optimize their operations for better returns. Machine learning Machine learning uses large amounts of data to train artificial intelligence (AI) models and make them more accurate. Data engineers use data pipelines to transport data across different sources, ensuring it’s clean and ready for analysis. These data models are used in various applications, from personalized recommendations to fraud detection, and much more. Skill Set of Modern Data Engineer The skill set of a modern data engineer includes the following data engineering tools, technologies, programming languages, and frameworks: Database management systems: Data processing frameworks: ETL tools: Cloud platforms: Data warehousing solutions: Programming languages: Frameworks and methodologies: How do Data Teams Implement Modern Data Engineering? Data engineers integrate all your data into models that support operations and analytics, enabling your company to extract data-driven insights. Further, they understand existing infrastructure and data needs and offer personalized solutions and services to help you make the most of your data. They use different data engineering tools to consolidate data from multiple sources to manage data efficiently. The data teams create data models and algorithms that ensure these models are fully functional and work smoothly. How Does Modern Data Engineering Work? Data engineering involves designing and building data pipelines that convert raw, unstructured data into organized datasets. These pipelines are important elements for a reliable data system, built to meet specific needs of businesses. Data engineers manage data pipelines to ensure users get accurate and reliable data.  The data integration pipeline has the following steps:  Best Practices for Modern Data Engineering Conclusion Data engineering is no longer optional today, it has become a necessity.  By converting data into meaningful actionable insights, data engineering helps businesses to make data-driven decisions. This not only enhances operational efficiency but also helps you deliver customized experiences quickly. Data teams not only add more value but also facilitate the development of the right solutions for various problems. People Also Ask (FAQs) What is modern data engineering? Modern data engineering includes designing, building, and maintaining scalable and efficient data systems. These systems support business intelligence, analytics, and data-driven decision-making by using advanced tools and practices to process vast amounts of data from various sources in real-time. What is the latest in modern data engineering? Some trends in data engineering that are popular now and will continue include: What is the salary of a modern data engineer? According to Glassdoor, the average salary for a data engineer in the United States is $1,31,939 per year. They typically get additional cash compensation, averaging $27,346 and ranging between $20,509 and

Read More

Data Engineering Services vs Warehousing vs Analytics: Pick Your Data Strategy

With data becoming a crucial part of the global industry, it is essential to unlock its full potential to boost your business. Here, we’ll discuss data engineering services, data warehousing, and data analytics to help determine the best choice. Data is the key to a successful business. Instead of storing the data in outdated setups like silos, you can create a central data repository and allow employees restricted access to the datasets. This makes it easier to use the business data for analytics and insights. Employees at all levels can make data-driven decisions by accessing the insights through their dashboards.  Data analytics, data warehousing, and data engineering are different yet interlinked concepts used to streamline data collection, storage, and analysis in an enterprise. Statistics show that the global big data and data engineering market is expected to be $75.55 billion in 2024 and predicted to reach $169.9 billion by 2029 at a CAGR (Compound Annual Growth Rate) of 17.6%.  However, you may have questions about which service to use for your business. Should you hire data engineering services, or will it be enough to pay for third-party or embedded data analytics solutions? Where does data warehousing fit into the grand scheme of things?  Let’s find out in this blog.  Is Data Warehousing the Same as Data Analytics? A data warehouse is a central repository or a large database containing massive amounts of business-related data. It can be built on-premises or on the cloud platform. A data warehouse is connected to several internal and external sources as well as third-party applications like business intelligence tools, data analytical dashboards, etc. Data warehousing services include setting up the repository, building data pipelines, streamlining data flow, maintaining the database, and periodically upgrading the systems.  Data analytics is the process of converting raw data into actionable insights to make data-driven decisions. It helps see the hidden patterns, trends, and correlations in historical and present datasets. The insights derived are shared with end-users (employees) via data visualization dashboards. Data analytics help shape business processes to deliver better results while consuming fewer resources. It can be used to understand market trends, customer behavior, product performance, employee productivity, etc., and make the necessary changes to achieve business goals. In short, data warehousing is not the same as data analytics. While the data warehouse is used to store and clean data, analytical tools help to understand what the data means and how it can help empower the business. Creating a synergy between data warehouse and data analytics will certainly give you the best results.  So, what is the difference between a Data Warehouse Engineer and a Data Analyst? A data warehouse engineer is responsible for managing the entire development lifecycle of a data warehouse. It is a backend process that includes many activities, such as building the warehouse, system connections, ETL, performance management, resource management, dimensional design, etc. A data warehouse engineer works with data scientists, data analysts, and data engineers to ensure the data flow is smooth and seamless across the enterprise.  A data analyst uses the data stored in data warehouses and data lakes to review the information, detect patterns, and identify key insights useful for the business. The primary responsibility of a data analyst is to find solutions for various business problems by analyzing historical and real-time data and sharing insights with decision-makers. The data analyst has to collaborate with data warehouse engineers, software developers, and data scientists to run the data-driven model without interruptions or errors.  What are Data Engineering Services?  Data engineering encompasses various processes like data collection, data storage, data cleaning, and data analysis for large amounts of raw, structured, unstructured, and semi-structured data. It allows data scientists and data analysts to derive in-depth insights using various statistical and analytical methods. Data engineering also includes ensuring that the quality of the datasets is high to prevent inaccurate insights.  Data engineering services cover a broader area and include many responsibilities. For example, it can also include data warehousing solutions or a part of the warehousing processes. Typically, data engineering involves the following activities:  So, do data engineers do data warehousing? Yes. Data engineers play a role in designing, developing, and maintaining the data warehouse and its connections. However, note that data warehousing services are only a part of data engineering responsibilities. The top data engineering companies provide end-to-end services, right from planning the strategy to maintaining and upgrading the relevant systems, tools, and processes in your business. Data engineers collaborate with other experts like software developers, data warehouse engineers, data scientists, and data analysts to create a robust data model in the enterprise.  Which is Better: Data Analytics or Data Engineering? Despite the overlap in some processes and data being the common factor, there are quite a few differences between data analytics and data engineering services.  A business can invest in data analytical tools and derive insights to make important decisions. It can partner with a data analytics company to get embedded analytics through customized dashboards without setting up the IT infrastructure in the enterprise. Data analytics as a service is a cloud-based solution where third-party companies handle most of the backend work and share insights and reports with businesses.  Data engineering is much more complex and extensive than data analytics. Data engineering consulting companies build data pipelines, set up system integrations, build data warehouses/ data lakes, connect the necessary data analytics and business intelligence tools, and maintain proper data flow across the IT infrastructure. Programming, database management, and cloud computing are part of the services.  In today’s competitive scenario, investing in data engineering services is a better option than limiting your business to data analytics. This empowers you to unlock the full potential of data and gain an edge over competitors. It also keeps you one step ahead and capable of making proactive decisions to grab market opportunities or avoid pitfalls.  Data Engineering Services vs. Data Warehousing vs. Data Analytics As you can see, the three aspects are different but interconnected on

Read More

11 Top Azure IaaS Companies for Scalable Cloud Solutions

Azure infrastructure as a service (IaaS) companies are third-party service providers that help startups, SMBs, and large enterprises build, deploy, and migrate IT infrastructure to the cloud. Here, we’ll discuss the leading Azure IaaS companies that offer scalable cloud solutions. IaaS stands for Infrastructure as a Service, a cloud solution where a majority (or the entire) IT infrastructure of a business is hosted on a remote cloud server. This reduces the load on the systems used on-premises and speeds up the processes to increase efficiency. Many companies offer IaaS solutions by migrating and building the IT infrastructure on public, private, and hybrid cloud platforms.  According to Statista, the public cloud IaaS market is expected to be $180 billion in 2024 and predicted to reach $232.39 billion by 2025. Microsoft Azure, AWS (Amazon Web Services), and Google Cloud form the top three cloud providers offering IaaS, PaaS, and SaaS solutions in the global market. Azure IaaS is a flexible, scalable, and cost-effective option for businesses to host their IT infrastructure on the cloud. In this blog, we’ll read more about Azure data engineering and the top companies that help businesses build scalable IaaS solutions on Microsoft Azure. What is Azure IaaS?  Microsoft Azure has grown exponentially since 2010, the year of its launch. It offers public and private cloud solutions and boasts a large ecosystem with over 200 apps, frameworks, tools, technologies, databases, etc. It is a suite of cloud services for enterprises to build virtual machines, networks, storage centers, applications, processes, etc., remotely and access them from any location at any time. Azure IaaS makes it easy to scale the processes as and when necessary and pay only for the solutions used by the business. Additionally, it supports big data analytics in real-time and offers effective capabilities like data security, data backup and recovery, risk management, and much more. What is an Example of Azure IaaS?- Key Components  A few popular Azure infrastructure-as-a-service examples are listed below:  VMS Azure Virtual Machines are used to deploy and manage Windows and Linux operating systems on a remote cloud server instead of on-premises. The virtual machines can be customized to suit the requirements of the business. For example, CPU, memory space, storage, etc., can be individually selected to customize the VM. This allows businesses to create powerful and super-fast virtual machines capable of processing large apps seamlessly.  Networking   A network is a set of connections between various components in the IT infrastructure. It also helps in managing resources. Azure’s network services consist of load balancers, virtual networks (VNet), VPN gateways (for greater data security and privacy), etc.   Storage Not every business needs the same kind of storage options. Moreover, a single enterprise might use different storage models for different types of data. Azure IaaS solutions include a range of storage solutions like file storage, disk storage, queue storage, blob storage, etc.  Security Data and system security is a huge concern in today’s scenario. Microsoft Azure has many options to ensure security and identity management on the platform. Key Vault, Active Directory, and Security Center are the top three features that help businesses manage user identities and provide/ limit access to data and resources. Leading Azure IaaS Companies for Scalable Cloud Solutions  DataToBiz DataToBiz is among the leading Azure IaaS Companies offering tailored data engineering services, data analytics, business intelligence, and artificial intelligence solutions to clients from around the globe. The company has experience in working with SMBs, MSMEs, startups, and established enterprises from various industries like manufacturing, telecommunications, supply chain, transportation, real estate, hospitality, healthcare, finance and banking, education, surveillance, etc. The company is a certified Gold Partner of Microsoft (as well as a certified partner of AWS and Google Cloud) and provides scalable, IaaS solutions for cost-effective prices. Businesses can hire an Azure infra developer or a team of experts to set up their IT infrastructure on the Azure cloud. DataToBiz offers IP protection and guaranteed NDA to ensure confidential data is secured and encrypted. The award-winning company’s end-to-end customized services empower businesses to unlock the full potential of their data and achieve their goals. Clients can choose from the different hiring models offered by the company.  Clutch Rating: 4.8 Stars  Simform Simform is an AI and ML company offering AWS and Azure data engineering services. It has been listed as the top US software development company by Clutch and has clients from the Fortune 500 Companies list. It also works with startups and progressive enterprises. The company provides serverless development and consulting services to help businesses migrate to the cloud platforms and digitalize their processes. It builds stable, reliable, scalable, and secure solutions for businesses from industries like manufacturing, healthcare, logistics, financial services, retail, etc. Clients can integrate the serverless architecture with Azure, AWS, and Google Cloud to scale up the apps whenever required. Simform also offers serverless storage management, API gateway integration, and management and designs FaaS (financial accounting advisory services) based on client’s specifications. The company’s business-centric approach and delivery-oriented mindset ensure guaranteed results for clients.  Clutch Rating: 4.9 Stars  Persistent Systems Persistent Systems is a digital engineering and enterprise modernization company offering Azure infrastructure as a service (IaaS) solutions to various clients. It is a certified solution partner of Microsoft and provides diverse services for businesses to adopt digital technologies and invest in cloud solutions. Be it migration and management of M365, data security, modernizing legacy apps, or Azure modernization using generative AI, the company uses its vast experience and access to the Microsoft ecosystem to deliver the promised results. It follows a proven methodology to migrate the IT infrastructure to Azure and build custom-designed frameworks, apps, etc., to leverage the full potential of business data and processes. Enterprises can rely on Persistent Systems for Azure infrastructure diagram and end-to-end innovation and implementation on the cloud. The company has clients from industries like finance, banking, insurance, software, telecom, media, consumer tech, life sciences, etc.  Clutch Rating: 4.5 Stars  ValueCoders ValueCoders is a software company offering IT staff augmentation

Read More

15 Trusted IT Staff Augmentation Service Providers to Consider in 2024

As we step into 2024, the landscape of staff augmentation services and IT staff augmentation service providers is evolving. Businesses tend to outsource IT experts temporarily to fulfill their data engineering needs. This brings us to a list of the top IT staff augmentation service providers, delivering robust talent solutions to elevate your workforce and meet business demands with excellence. A trusted staff augmentation service provider is a strategic partner that assists businesses in acquiring skilled IT professionals on a temporary or project-specific basis, enabling companies to rapidly address skill gaps, scale their teams up or down as needed, and ensure the successful execution of IT projects while often offering cost savings compared to traditional hiring methods. In 2024, when considering staff augmentation service providers for your IT needs, it’s crucial to focus on companies that offer a dynamic blend of expertise, scalability, and adaptability. A report by PR Newswire reveals that companies around the world will spend USD 81.87 billion on staff augmentation. Therefore, leading IT staff augmentation service providers should excel in sourcing top-notch talent and demonstrate a deep understanding of emerging technologies. Their ability to align their talent pool with your specific project requirements and organizational goals while staying ahead of evolving industry trends will be paramount. Why Choose IT Staff Augmentation Service Providers? Choosing IT staff augmentation service providers can be a strategic decision for businesses looking to access specialized skills and expand their workforce without the hassle of traditional hiring. These providers offer flexibility, scalability, and a vast pool of skilled professionals to address specific project needs. Top IT Staff Augmentation Service Providers to Consider in 2024 Companies are constantly seeking innovative ways to stay competitive and agile. Staff augmentation has emerged as a powerful solution to address fluctuating workloads, acquire specialized skills, and maintain flexibility in a dynamic environment. As we approach 2024, the need for reliable staff augmentation services is more critical than ever. To help you navigate this ever-expanding industry, we have compiled a list of trusted staff augmentation service providers to consider in 2024. DataToBiz DataToBiz is a technology company focused on leveraging data to drive business insights and transformation. With a commitment to harnessing the power of data, Datatobiz offers a range of data analytics and intelligence services and consultations.  Alongside, DataToBiz is a leading IT staff augmentation service provider specializing in data engineering services. Their core mission is to equip businesses with the precise talent required to thrive in an increasingly data-centric world.  DataToBiz offers a pool of certified Data Analysts, Power BI/Tableau Developers, AI/ML Engineers, Azure experts, GCP experts, and more, to deliver excellence to your IT projects. Their team of seasoned professionals is dedicated to providing clients with the expertise they need to harness the full potential of their data resources.  Average Rating Review: 4.8(Source- Clutch, Google Business) Toptal Toptal has earned its reputation as one of the premier platforms for connecting businesses with top-tier talent. With a rigorous vetting process, Toptal ensures that clients have access to a curated pool of freelancers and experts in fields such as software development, design, and project management. Their client base spans a variety of industries, from technology to finance, and they operate internationally, serving companies worldwide.  Toptal’s reputation is built on a foundation of trust, quality, and excellence. They continue to serve as a beacon for businesses seeking top-notch talent and expertise, demonstrating their commitment to delivering exceptional results to clients worldwide. Average Rating Review: 4.9(Source- Clutch, Google Business) Turing Turing, with their AI-powered deep-vetting talent platform, specializes in matching companies with the engineering talent required for success. Whether it’s staff augmentation or fully managed services, Turing simplifies the process of transforming businesses.  The company stands out for its innovative approach to staff augmentation and remote staffing, making it easier for businesses to access top-tier software developers and professionals globally. Their algorithm ensures the perfect match for your project.  Average Rating Review: 5.0(Source- Clutch, Google Business) Aimprosoft Since 2005, Aimprosoft has been unlocking its extensive tech talent pool, dedicated to serving enterprises. Their expertise spans platforms like Liferay, Alfresco, and Hybris, alongside web and mobile solutions tailored to meet clients’ requirements.  Aimprosoft’s enterprise partners value their comprehensive offerings, which include software development, customization services, expert consulting, and top-tier quality assurance. The staff augmentation services of the company help global companies realize their technology vision.  Average Rating Review: 4.7(Source- Clutch, Google Business) ELEKS ELEKS, a trusted partner for global enterprises, SMEs, and tech innovators, empowers businesses through tailored software development, product design, QA, and consultancy services. With a team of over 2000 software experts, ELEKS customizes core services to meet precise business needs.  It drives digital transformations, facilitating agility and innovation with technologies like blockchain, Data Science, and Cloud. ELEKS excels in unifying digital ecosystems, and optimizing IT systems, sites, and building remote teams with staff augmentation services for continued growth and future scalability.  Average Rating Review: 4.8(Source- Clutch, Google Business) Intellias Intellias delivers comprehensive digital consulting services designed to address specific business challenges encountered by companies of all sizes and across diverse industries during their digital transformation journey.  Their team of digital consulting experts from various domains equips clients with the necessary tools and a detailed roadmap to transform bold concepts into tangible business outcomes, enhancing profitability, efficiency, and market demand.  Intellias formulates a tailored strategy, ushering clients through solution discovery, technology advisory, quality control, and security assessment, efficiently managing emerging challenges.  Average Rating Review: 4.9(Source- Clutch, Google Business) Intelliswift Intelliswift has evolved from a staffing company into a dynamic organization deeply committed to embracing innovation. Their expertise extends to constructing data-rich modern platforms and sophisticated data management and analytics systems, catering to forward-thinking enterprises.  Guided by a team of passionate and technocentric innovators, Intelliswift is a strong name in the staff augmentation industry. With over 20 years of staffing experience, they source top talents to deliver breakthrough solutions to industries such as Pharma, BFSI, and Retail.  Their customer-centric approach has earned them the trust of over 10 Fortune 100 and

Read More

Data Engineering Services: A Modern Business Essential

Data engineering focuses on the practical applications required to establish a flexible, scalable, and agile data infrastructure in an enterprise. It is the most vital part of adopting the data-driven model to make business decisions. Here, we’ll discuss data engineering services and their role in modern businesses.  Data is an integral part of the IT industry. Over the years, users have generated large volumes of data, which is being collected by businesses to fine-tune their products/ services and enhance customer experience. Statistics show that an average user generates 1.7 MB of data per second.  Around 97.2% of businesses are investing in artificial intelligence and big data, though a study shows that many companies analyze only up to 40% of the data they collect from all sources. Another interesting observation is that companies that actively use big data analytics increase their profits by around 8%. Wouldn’t it be beneficial for businesses to further utilize data to amplify their profits?  So, how can it be done?  The answer is big data engineering services.  In simple terms, data engineering is the process of streamlining data collection, storage, and analytics to get more insights from datasets. However, it is an elaborate process that requires IT infrastructure and expert skills. Data engineering is the foundation of building the data analytical model in an enterprise. Businesses partner with data engineering companies to adopt the data-driven model for effective and faster decision-making. Enterprises find it a cost-effective solution to rely on offshore data engineering service providers to derive actionable insights using AI and big data analytics.  In this blog, we understand the process in detail and explain why data engineering is needed for every modern business around the world.  What is Data Engineering? Data engineering is the process of collecting and validating data to ensure high-quality datasets are available for data scientists. Data engineering is a vast domain that includes a range of skills, tools, and applications. It is a combination of several modules like data infrastructure, data mining, data crunching, data acquisition, data modeling, and data management.  A data engineer should maintain the data infrastructure that supports business intelligence solutions. They should work with programming languages, database software, machine learning, and artificial intelligence algorithms. They can work in small teams that focus only on ingesting data into systems or be a part of large teams offering data engineering services & solutions and collaborate with data scientists and database administrators to streamline the data pipeline in mid and large-sized enterprises.  What are Data Engineering Services? Data engineering services are varied and versatile. The top data engineering services companies offer end-to-end solutions to design, build, deploy, and maintain a seamless system that collects, cleans, stores, processes, analyzes, and visualizes data through BI tools. The following are some important services offered by the companies:  Data Ingestion  Data ingestion is the process of moving or replicating data from sources to the cloud storage platform. It is a prominent step in the modern data stack. It determines the quality and type of data a business uses for analytics. Data engineers have to determine if this process will take place in batch mode or in real-time. Factors like cost and resource allocation play a vital role in finalizing the time frame for data ingestion.  Data Storage  Data storage management is another crucial part of data engineering services. The data collected from multiple internal and external sources has to be stored in a central database for further processing and analysis. Data engineers have to design the best data storage method that allows employees to access datasets in real-time. Data storage solutions can be on-premises or on the cloud. Businesses can even use a combination of both. Data warehousing and data lakes are two popular methods used to store vast amounts of data. Businesses offer Azure data engineering and AWS data engineering services to build and customize cloud data storage centers.  Data Integration  Data integration is a key data engineering service as it sets up the necessary connections between different systems, apps, and databases. It is the process of setting up the connection between the central database with the input and output channels. For example, the sources have to be connected with the data warehouse to collect data. Similarly, the data warehouse has to be connected with ERP systems and BI tools to run analytics and share data visualizations with the end user.  Data Processing Data processing is the process where large datasets are cleaned and manipulated to derive useful information. Data from the data warehouse or data lakes are retrieved, classified, cleaned, and formatted to make it ready for analysis. This stage helps remove errors and duplicate data to increase the accuracy of the derived insights.  It is yet another important part of data engineering services as low-quality data can result in incorrect insights which can lead to wrong business decisions.  Business Intelligence  Business intelligence is a vital part of the process. This is where data is converted into meaningful information and presented in graphical reports. Data engineers have the responsibility to identify the right BI tool based on business requirements and customize it accordingly. The dashboards also have to be set up and integrated with the rest of the infrastructure to provide data visualizations in real-time to employees across all departments.  How Does Data Engineering Help a Business? Data engineering or information engineering is the foundation for adopting and using the data-driven model in an enterprise. Data engineering and analytics go hand in hand and have to be aligned at all times to ensure that the top management and employees can access actionable insights at any given point in time. This allows them to make faster decisions based on reliable reports rather than guesswork.  Once data engineers set up the data architecture (systems and connections), data scientists can perform the analytics and share reports. Artificial intelligence tools and machine learning algorithms are used in the process to ensure the seamless and real-time flow of data from one system to another.  Typically, data and engineering services help businesses in the following ways: Data engineering companies also offer data analytical

Read More
DMCA.com Protection Status

Get a Free Data Analysis Done!

Need experts help with your data? Drop Your Query And Get a 30 Minutes Consultation at $0.

They have the experience and agility to understand what’s possible and deliver to our expectations.

Drop Your Concern!