9 Building Blocks of Data Engineering Services – The Fundamentals
Data engineering is the key for businesses to unlock the potential of their data. Here, we’ll discuss the fundamentals aka the building blocks of Data Engineering Services, and the role of data engineering in helping businesses make data-driven decisions in real time. Data engineering services are gaining demand due to digital transformation and the adoption of data-driven models in various business organizations. From startups to large enterprises, businesses in any industry can benefit from investing in data engineering to make decisions based on actionable insights derived by analyzing business data in real-time. Statistics show that the big data market is expected to reach $274.3 billion by 2026. The real-time analytics market is predicted to grow at CAGR (compound annual growth rate) of 23.8% between 2023 and 2028. The data engineering tools market is estimated to touch $89.02 billion by 2027. There’s no denying that data engineering is an essential part of business processes in today’s world and will play a vital role in the future. But what is data engineering? What are the building blocks of data engineering services? How can it help your business achieve your goals and future-proof the process? Let’s find out below. What are Data Engineering Services? Data engineering is the designing, developing, and managing of data systems, architecture, and infrastructure to collect, clean, store, transform, and process large datasets to derive meaningful insights using analytical tools. These insights are shared with employees using data visualization dashboards. Data engineers combine different technologies, tools, apps, and solutions to build, deploy, and maintain the infrastructure. Data engineering services are broadly classified into the following: Azure Data Engineering Microsoft Azure is a cloud solution with a robust ecosystem that offers the required tools, frameworks, applications, and systems to build, maintain, and upgrade the data infrastructure for a business. Data engineers use Azure’s IaaS (Infrastructure as a Service) solutions to offer the required services. Finding a certified Microsoft partner is recommended to get the maximum benefit from Azure data engineering. AWS Data Engineering AWS (Amazon Web Services) is a cloud ecosystem similar to Azure. Owned by Amazon, its IaaS tools and solutions help data engineers set up customized data architecture and streamline the infrastructure to deliver real-time analytical insights and accurate reports to employee dashboards. Hiring certified AWS data engineering services will give you direct access to the extensive applications and technologies in the AWS ecosystem. GCP Data Engineering Google Cloud Platform is the third most popular cloud platform and among the top three cloud service providers in the global market. From infrastructure development to data management, AI, and ML app development, you can use various solutions offered by GCP to migrate your business system to the cloud or build and deploy a fresh IT infrastructure on a public/ private/ hybrid cloud platform. Data Warehousing Data warehousing is an integral part of data engineering. With data warehousing services, you can eliminate the need for various data silos in each department and use a central data repository with updated and high-quality data. Data warehouses can be built on-premises or on remote cloud platforms. These are scalable, flexible, and increase data security. Data warehousing is a continuous process as you need to constantly collect, clean, store, and analyze data. Big Data Big data is a large and diverse collection of unstructured, semi-structured, and structured data that conventional data systems cannot process. Growing businesses and enterprises need to invest in big data engineering and analytics to manage massive volumes of data to detect hidden patterns, identify trends, and derive real-time insights. Advanced big data analytics require the use of artificial intelligence and machine learning models. 9 Building Blocks of Data Engineering Services Data Acquisition Data ingestion or acquisition is one of the initial stages in data engineering. You need to collect data from multiple sources, such as websites, apps, social media, internal departments, IoT devices, streaming services, databases, etc. This data can be structured or unstructured. The collected data is stored until it is further processed using ETL pipelines and transformed to derive analytical insights. Be it Azure, GCP, or AWS Data Engineering, the initial requirements remain the same. ETL Pipeline ETL (Extract, Transform, Load) is the most common pipeline used to automate a three-stage process in data engineering. For example, Azure Architecture Center offers the necessary ETL tools to streamline and automate the process. Data is retrieved in the Extract stage, then standardized in the Transform stage, and finally, saved in a new destination in the Load stage. With Azure Data Engineering, service providers use Azure Data Factory to quickly build ETL and ELT processes. These can be no-code or code-centric. ELT Pipeline ELT (Extract, Load, Transform) pipeline is similar but performs the steps in a slightly different order. The data is loaded to the destination repository and then transformed. In this method, the extracted data is sent to a data warehouse, data lake, or data lakehouse capable of storing varied types of data in large quantities. Then, the data is transformed fully or partially as required. Moreover, the transformation stage can be repeated any number of times to derive real-time analytics. ELT pipelines are more suited for big data analytics. Data Warehouse A data warehouse is a central repository that stores massive amounts of data collected from multiple sources. It is optimized for various functions like reading, querying, and aggregating datasets with structured and unstructured data. While older data warehouses could store data only tables, the modern systems are more flexible, scalable, and can support an array of formats. Data warehousing as a service is where the data engineering company builds a repository on cloud platforms and maintains it on behalf of your business. This frees up internal resources and simplifies data analytics. Data Marts A data mart is a smaller data warehouse (less than 100GB). While it is not a necessary component for startups and small businesses, large enterprises need to set up data marts alongside the central repository. These act as departmental silos but with seamless connectivity
Read More